Into the Looking Glass: Literacy Acquisition and Mirror Invariance in Preschool and First-Grade Children

Tânia Fernandes
Universidade de Lisboa

Isabel Leite
Universidade de Évora

Régine Kolinsky
Université Libre de Bruxelles and Fonds de la Recherche Scientifique-FNRS

At what point in reading development does literacy impact object recognition and orientation processing? Is it specific to mirror images? To answer these questions, forty-six 5- to 7-year-old preschoolers and first graders performed two same-different tasks differing in the matching criterion—orientation-based versus shape-based (orientation independent)—on geometric shapes and letters. On orientation-based judgments, first graders outperformed preschoolers who had the strongest difficulty with mirrored pairs. On shape-based judgments, first graders were slower for mirrored than identical pairs, and even slower than preschoolers. This mirror cost emerged with letter knowledge. Only first graders presented worse shape-based judgments for mirrored and rotated pairs of reversible (e.g., b–d; b–q) than nonreversible (e.g., e–ә) letters, indicating readers’ difficulty in ignoring orientation contrasts relevant to letters.

Learning to read is a gateway to culture and education, and most impressively, it profoundly changes the brain and mind. Literacy acquisition leads to the emergence of a neural network in the ventral occipitotemporal cortex tuned to the processing of written strings, reproducible across literate people, independently of script (e.g., in Japanese and French readers; Dehaene, Nakamura, et al., 2010; e.g., for kana and kanji in Japanese readers; Nakamura, Dehaene, Jobert, Le Bihan, & Kouider, 2005) and age of acquisition (i.e., in childhood for early literate adults or in adulthood for late literate adults; Dehaene, Pegado, et al., 2010). Notably, learning to read also impacts on evolutionarily older systems, including visual object recognition (e.g., Dehaene, Nakamura, et al., 2010; Dehaene, Pegado, et al., 2010; Pegado, Nakamura, Cohen, & Dehaene, 2011; Pegado, Nakamura, et al., 2014). This agrees with the neuronal recycling hypothesis (Dehaene, 2009), which holds that the ventral occipitotemporal regions, originally devoted to object recognition, were partially recycled to accommodate literacy, with spillover effects on the older function.

In fact, probably as a consequence of the intensive perceptual training that it requires, literacy acquisition alters early visual responses in the occipital cortex, including in areas involved in very early processing (i.e., primary visual cortex, V1; e.g., Dehaene, Pegado, et al., 2010; Pegado, Comclato, et al., 2014). The impact of literacy can thus be found on several visual tasks outside the written domain. For instance, visual integration is enhanced in readers, as shown by early and late literate adults’ superior capacity (compared to illiterates) in connecting local elements into an overall shape (Szwed, Ventura, Querido, Cohen, & Dehaene, 2012). The visual properties of the script itself have also a moderator role. For example, Chinese and Korean children learning to read visually complex and demanding scripts outperform Israeli and Spanish children on visuospatial skills.
(McBride-Chang et al., 2011, Experiment 1), and the importance of reading to spatial skills is stronger than that of spatial skills to reading, as shown by multiple regression analyses run at two testing moments in a 1-year longitudinal study with Chinese children (McBride-Chang et al., 2011, Experiment 2).

Learning to read in scripts such as the Latin alphabet also requires quite specific adaptations, especially when considering original properties of the visual system that may oppose to literacy acquisition. One such property is mirror-image generalization or mirror invariance: Lateral mirror images (180° flip outside the image plane, e.g., 1 and 7) are processed as equivalent percepts by humans and other animals (e.g., Dehaene, Nakamura, et al., 2010; Logothetis, Pauls, & Poggio, 1995; Pegado et al., 2011; Tarr & Pinker, 1989). Yet, to learn a script with mirrored symbols, one must discriminate mirror images, which collides with mirror invariance.

Besides the Latin alphabet (which is used in more than 400 languages; e.g., b and d), other scripts such as the Japanese hiragana (e.g., は and が) and the Cyrillic alphabet (e.g., ё and ژ) also include mirrored or quasi-mirrored symbols. In any of these scripts, mirrored symbols are just a small proportion, but this is sufficient to trigger the ability to discriminate them, which transfers to nonlinguistic categories (e.g., Dehaene, Nakamura, et al., 2010; Kolinsky et al., 2011; Pegado et al., 2011), either novel (i.e., blob-like and geometric shapes) or familiar (e.g., pictures of tools or clothes). Indeed, in contrast to readers of the Latin alphabet, illiterate adults present poor mirror discrimination (Fernandes & Kolinsky, 2013; Kolinsky et al., 2011), and readers of Tamil, a script with no mirrored symbols, have the same difficulties as illiterates (Danzi & Pederson, 1998; Pederson, 2003). Therefore, it is not learning to read in general that causes people to become able to discriminate mirror images. The trigger is learning a script with mirrored symbols.

Importantly, Pegado, Nakamura, et al. (2014; see also Kolinsky & Fernandes, 2014) recently showed that mirror discrimination also extends to situations where orientation processing is irrelevant and even harmful to the task at hand. In a same-different, identity-based, and orientation-independent task, requiring a same response to both exact matches (henceforth, identical pairs) and mirrored pairs of the same object, only illiterate adults had as good performance for mirrored as for identical pairs. In contrast, adult readers of the Latin alphabet showed a mirror cost, that is, worse performance for mirrored than identical pairs of linguistic (i.e., pseudowords) and nonlinguistic materials (i.e., false-font strings, composed of letter-like characters; pictures of objects and faces). Thus, with literacy acquisition, mirror discrimination seems to become part of visual object recognition, as readers of the Latin alphabet are unable to ignore mirror-image differences even when this hinders performance. This specific impact of literacy could also explain the weaker priming effect found for targets preceded by mirrored rather than by identical primes in short-term priming studies with adult readers (e.g., Dehaene, Nakamura, et al., 2010; Pegado et al., 2011).

Although these studies have shown that learning a script with mirrored symbols enhances sensitivity to mirror images, to the best of our knowledge no study has hitherto examined when, during literacy acquisition, mirror discrimination becomes part of visual object recognition. Examining this question in children differing on reading skills (preschoolers with no reading skills vs. beginning readers at the end of the first grade) was the main aim of the present study. Single letters and geometric shapes were used to investigate the effects of literacy acquisition on linguistic and nonlinguistic material.

Mirror discrimination probably develops earlier for letters and for nonlinguistic stimuli visually similar to letters, such as geometric shapes, than for other nonlinguistic categories. Indeed, even before children are able to read, their letter knowledge already predicts attention to text (as measured through eye movements; Evans, Saint-Aubin, & Landry, 2009) and stronger responsiveness of the left occipitotemporal region to letters than to other visual categories (Cantlon, Pinel, Dehaene, & Pelphrey, 2011). Consistently, illiterate adults who are unable to decode but have high letter knowledge process letters differently than nonletters (Fernandes, Vale, Martins, Morais, & Kolinsky, 2014). Regarding mirror-image processing, Kolinsky and Fernandes (2014) recently showed that, whereas for pictures of familiar objects illiterate adults did not present any mirror cost on identity-based judgments (as in Pegado, Nakamura, et al., 2014), for geometric shapes they did present a mirror cost. This sensitivity to mirror-image differences in geometric shapes by illiterate adults is consistent with the hypothesis that the highly reproducible location of the brain regions devoted to letter and visual word recognition is due (at least partially) to the fact that these neurons are specifically tuned to shape features similar to those of letters (Hannagan, Amedi, Cohen, Dehaene-Lambertz, & Dehaene, 2015). Under this view, the closer the features of
nonlinguistic stimuli to those of letters, the earlier the consequences of literacy on visual (nonlinguis-
tic) processing. Notably, rudimentary reading seems
enough, as late literate adults present the same mir-
ror costs as early literates on both linguistic and
nonlinguistic materials (Kolinsky & Fernandes,

However, late literate adults are not comparable
to young children. Note that even explicit mirror
discrimination, that is, when orientation is critical
to the task, seems to develop slowly in childhood.
Children often present mirror errors in reading and
writing during the first 2 years of literacy instruc-
tion (Cornell, 1985). Compared with fluent adult
readers, first-grade children fixate more and for
longer time on distractors differing from the target-
word on two mirrored letters (e.g., megl, letters
underlined were mirrored in the distractor) than on
control distractors (e.g., matar; Duñabeitia, Dim-
itropoulou, Estévez, & Carreiras, 2013). For nonlin-
guistic material, in contrast to literate adults, 7-
to 8-year-old children present similar short-term prim-
ing effects when pictures of familiar objects (e.g.,
animals) are preceded by mirrored and by identical
primes (Wakui et al., 2013).

We thus decided to investigate the impact of
learning to read on mirror-image processing of let-
ters and geometric shapes in two tasks where orien-
tation was either critical or irrelevant for successful
performance using a within-participants design.
Furthermore, it is still unclear whether the impact of
literacy on orientation processing is restricted to or
is at least stronger for mirror images than for other
orientation contrasts. Thus, we contrasted the pro-
cessing of mirror images with the processing of
rotations in the image plane (henceforth, plane rota-
tions; e.g., 180° clockwise rotation: 1 and l). Indeed,
as highlighted by Gibson, Pick, Osser, and Gibson
(1962), both mirror images and plane rotations dis-
ingen letters of the Latin alphabet, for example,
d-b and d-p, respectively. Given that letters are a
category of expertise for readers (McCandliss,
Cohen, & Dehaene, 2003), dimensions that maxi-
mally distinguish letters, like orientation, would
become enhanced through perceptual learning (e.g.,
Folstein, Palmeri, & Gauthier, 2013). Literacy should
thus impact both mirror-image and plane-rotation
processing. Yet, the neuronal recycling hypothesis
predicts that this impact should be stronger for the
former contrast (Dehaene, 2009) because the visual
system is originally sensitive to plane rotations but
not to mirror images (e.g., Logothetis et al., 1995).
Consistently, both 4- to 6-year-old children and illit-
erate adults find it harder to explicitly discriminate
mirror images than plane rotations of nonlinguistic
objects (Fernandes & Kolinsky, 2013; Gregory, Land-
dau, & McCloskey, 2011). Whether a similar pattern
would be found when orientation is irrelevant to
the task is not clear. In Pegado, Nakamura, et al.
(2014), mirror images were the only orientation con-
trast examined. In Kolinsky and Fernandes (2014),
although for identity-based judgments of familiar
objects illiterate adults presented no orientation
costs, for geometric shapes both illiterate and liter-
ate adults presented stronger interference for
rotated than mirrored pairs.

Therefore, to examine orientation processing
when critical versus irrelevant to the task, children
performed two same–different tasks, on which they
decided in each trial whether the second stimulus
(S2) was the same or not as the first one (S1). As
illustrated in Figure 1, the two tasks were per-
formed separately on geometric shapes and single
letters, and had the same four trial types: fully
different trials (on which S2 differed from S1 on
shape and on orientation; e.g., b-u), identical trials
(S2 had the same shape and same orientation as S1;
e.g., b-b), mirrored trials (S2 was a mirror image of
S1; e.g., b-d), and rotated trials (S2 was a plane
rotation of S1; e.g., b-q). The mirror-image and
plane-rotation contrasts differed from the standard
stimulus (S1) by the same 180° difference and pre-
served all object-based properties (global shape,
parts, and relation between parts). Thus, any differ-
ence in performance between mirrored and rotated
trials would not be due to low-level factors.

Both tasks examined mirror-image and plane-
rotation processing, and differed only on the match-
ing criterion: Orientation was either irrelevant or
critical for successful performance. In the shape-based
task, children were asked to classify a stimulus pair
as same if S2 had the same shape as S1; orientation
was thus irrelevant to the task, and hence not only
identical but also mirrored and rotated pairs should
be classified as same. In this task, orientation pro-
cessing would hinder performance, leading to an
orientation cost on mirrored or rotated trials com-
pared to identical trials, which were used as base-
line. In contrast, in the orientation-based task,
orientation was the critical dimension: Children
were asked to classify a stimulus pair as same only
if S2 was identical to S1—same shape and same ori-
entation—and to classify as different both the fully
different pairs and the mirrored and rotated pairs.
Orientation processing was assessed by examining the
performance drop on trials on which only orienta-
tion varied (mirrored and rotated trials) relative to
fully different trials.
Given the original property of mirror invariance of the ventral visual system (Dehaene, 2009; Logothetis et al., 1995; Tarr & Pinker, 1989), we expected preschoolers to be better able to tolerate, that is, to classify as same, the mirrored pairs in the shape-based task than to discriminate them in the orientation-based task, whereas they would be as able to tolerate as to discriminate plane rotations. Indeed, in the shape-based task, preschoolers would exhibit no mirror cost at all. Conversely, in the orientation-based task, they would present the worst performance for mirrored pairs, even when compared with rotated pairs. This pattern of results was expected for both materials. If mirror discrimination transferred to nonlinguistic categories early on in reading acquisition, first graders would present good mirror discrimination of both letters and geometric shapes in the orientation-based task. If it became part of visual object recognition, they would also present a mirror cost for both materials in shape-based judgments. Given the importance of plane-rotation contrasts in letter discrimination, we expected first graders to be less able to tolerate plane rotations in the shape-based task than to discriminate them in the orientation-based task. Therefore, the strongest difference between preschoolers and first graders was expected for the mirrored pairs. Note that by using the two normalized indices (i.e., the orientation cost and the performance drop), we ensured that any difficulty to be found on explicit mirror discrimination by preschoolers could not be due to overall differences between groups.

We also examined the mirror cost for reversible letters (i.e., differing only by orientation; e.g., u-n) and nonreversible letters, for which orientation contrasts do not map onto different representations (e.g., e-s). As mirror discrimination is most relevant to reversible letters (Perea, Moret-Tatay, & Panadero, 2011), the orientation cost on shape-based judgments of first graders should be stronger for these letters, but no difference was expected for preschoolers due to their limited letter knowledge.

Finally, to assess whether literacy-related skills (i.e., letter knowledge in preschoolers, and reading skills and phonological awareness in first graders) were associated with mirror discrimination or orientation processing in general, we conducted correlation analyses in each group for each material.

Method

Participants

Twenty-eight preliterate preschoolers (17 males; Mean age = 65.9 months, SD = 3.2) and 24 first graders (7 males; Mean age = 82.7 months, SD = 3.6), all Portuguese native speakers, from schools in Lisbon and Évora, Portugal, with no known history of...
developmental and/or neurological disorders, participated voluntarily (the study followed the ethical guidelines of the Declaration of Helsinki). Data were collected between March and June 2011, and March and June 2013. Due to the end of the school year, six preschoolers did not perform the orientation-based task for geometric shapes and three did not perform it for letters. These children were excluded, as well as those who performed at the chance level on the fully different and identical trials, which led to same responses in the two tasks (for geometric shapes: two preschoolers and one first grader; for letters: two other preschoolers and the same first grader). The final sample thus included 20 preschoolers for geometric shapes and 23 for letters, plus 23 first graders for both materials.

Table 1 presents children’s results in five domains: nonverbal IQ (Colored Progressive Matrices of Raven, Portuguese Version; Simões, 2000), visuospatial working memory (Corsi block test, Wechsler Memory Scale, 3rd ed.; Wechsler, 1997), phonological awareness (i.e., same–different task on geometric shapes: two preschoolers and one first grader; for letters: two other preschoolers and the same first grader). The final sample thus included 20 preschoolers for geometric shapes and 23 for letters, plus 23 first graders for both materials.

Table 1 presents children’s results in five domains: nonverbal IQ (Colored Progressive Matrices of Raven, Portuguese Version; Simões, 2000), visuospatial working memory (Corsi block test, Wechsler Memory Scale, 3rd ed.; Wechsler, 1997), phonological awareness (i.e., same–different task on the target unit—the pheme, the rhyme, or the syllable—of two words; 6 practice trials plus 16 trials per unit), letter knowledge (naming and recognition of lower- and upper-case letters of the Portuguese alphabet), and reading skills for first graders only, that is, reading fluency of isolated items (3DM Battery, Portuguese Version; Reis, Faisca, Castro, & Petersson, 2013) and reading comprehension (Lobrot L3 test, Portuguese adaptation; Sucena & Castro, 2008).

The phonological awareness task was examined using signal detection theory (SDT) d’ scores (Macmillan & Creelman, 2005). The reading index was the summed result across the 3DM subtests and the Lobrot L3 test, given their high correlations, r(21)s > .85, ps < .001.

In the Portuguese educational system, literacy instruction starts only at Grade 1. There are no official directives concerning literacy-related activities in preschool years, and hence, usually no (or only limited) instruction on letter knowledge is given, explaining the low letter knowledge of these preschoolers (see Table 1), and the independence between their letter knowledge and phonological awareness, r(18) = -.26, p = .13. In contrast, for first graders, phonological awareness was significantly associated with reading skills, r(21) = .59, p < .005. In both groups, visual working memory was significantly associated with nonverbal IQ (visuospatial abilities): preschoolers, r(18) = .46, and first graders, r(21) = .40, both ps < .03.

Table 1

<table>
<thead>
<tr>
<th></th>
<th>Preschoolers (n = 23)</th>
<th>First graders (n = 23)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (in months)</td>
<td>66.04 (3.34)</td>
<td>82.65 (3.64)</td>
</tr>
<tr>
<td></td>
<td>[64.60, 67.49]</td>
<td>[81.08, 84.22]</td>
</tr>
<tr>
<td>Nonverbal IQ:</td>
<td>17.70 (2.99)</td>
<td>26.74 (5.37)</td>
</tr>
<tr>
<td>Raven testa</td>
<td>[16.40, 18.99]</td>
<td>[24.41, 29.06]</td>
</tr>
<tr>
<td>Visuospatial working memory:</td>
<td>6.61 (2.71)</td>
<td>13.17 (2.39)</td>
</tr>
<tr>
<td>memory: Corsi blocksb</td>
<td>[5.44, 7.78]</td>
<td>[12.14, 14.20]</td>
</tr>
<tr>
<td>Phonological</td>
<td>1.51 (1.40)</td>
<td>5.19 (0.92)</td>
</tr>
<tr>
<td>awareness: d’ score</td>
<td>[0.91, 2.12]</td>
<td>[4.79, 5.58]</td>
</tr>
<tr>
<td>Letter knowledgec</td>
<td>24.65 (13.67)</td>
<td>65.26 (7.45)</td>
</tr>
<tr>
<td>(summed score)</td>
<td>[18.74, 30.56]</td>
<td>[62.04, 68.48]</td>
</tr>
</tbody>
</table>

Note. SD in parentheses; 95% CI in brackets. aTotal of correct responses out of 36 in the Colored Progressive Matrices of Raven. bNumber of trials correctly performed in forward and in backward sequences. cTotal number of correct responses out of 68 items, that is, 2 (naming and recognition tasks) × 22 upper-case letters of the Portuguese alphabet (excluding letters H, K, W, Y), plus 2 (naming and recognition tasks) × 12 lower-case letters (i.e., b, d, p, q, f, g, r, s, i, o, m, x). dNumber of items read correctly per list in 30 s. eSilent reading test with 5-min time limit, on which participants select the word that correctly completes each sentence (out of five possible words). Performance computed as number of items correctly completed (total of 36 sentences).

Material

Two types of asymmetrical black-line material were used: nine geometric shapes and eight letters (see Figure 1). The geometric shapes were those used by Fernandes and Kolinsky (2013), except for two stimuli that were replaced by those presented in Figure 1A. As shown in Figure 1B, half of the letters were nonreversible and the others were reversible (for b and p both orientation contrasts corresponded to real letters, but not for m and u).

For each material, three versions were created with irfanview (www.irfanview.com): the standard, its mirror image (180° lateral reflection), and its plane rotation (180° clockwise rotation). For each standard stimulus, four pairs were prepared to create the four trial types (S1 was the standard):
identical trials (S2 was the same as S1), mirrored trials (S2 was the mirror image of S1), rotated trials (S2 was the plane rotation of S1), and fully different trials (S2 was a different standard stimulus).

Procedure

Children were tested in a quiet room of their school. They performed the two same–different tasks for the two materials in four sessions. The shape-based task was performed first to ensure that any orientation cost to be found would not be due to prior performance of the orientation-based task. Sequence of events in experimental trials was the same for each task and material (see Figure 1A), and was controlled by E-Prime 2.0 (www.pstnet.com/eprime). Children sat at a distance of ~70 cm of the computer screen (resolution: 640 × 480 pixels; refresh rate: 60 Hz) and were asked to perform a same–different judgment on S2 in each trial (in each task, half of the trials were expected to lead to a same response). Instructions were given orally with six demo trials using animals as stimuli. Next, to ensure that children understood the task, they performed 12 practice trials (six with animals, six with the experimental material; half of the trials leading to a same response), with feedback on response accuracy.

In the shape-based task, on each trial children were asked to decide as accurately and quickly as possible whether S2 had the same shape as S1, independently of orientation, by pressing one of the two keys of the response box (same response given with the right index finger). It was emphasized that stimuli’s name was irrelevant to the task; S2 should be classified based on shape and not on name. Note that at least for letters, especially for reversible ones, an identity-based criterion (same identity, same name) would induce an incorrect response (e.g., d and b are different letters, with different names, but have the same shape). In the orientation-based task, children were asked to decide whether S2 was an exact match of S1. They should respond different (using the left key, left index finger) if S2 had a different orientation than S1 even if they had the same shape. Accuracy and reaction times (RTs; measured from S2 onset to response onset) were collected in each trial.

Children performed 108 trials for geometric shapes in each task (i.e., shape-based task: 54 fully different, 18 identical, 18 mirrored, and 18 rotated trials; orientation-based task: 54 identical, 18 fully different, 18 mirrored, and 18 rotated trials). For letters, they performed 96 trials per task (for each letter type: in the shape-based task, 24 fully different, 8 identical, 8 mirrored, and 8 rotated trials; in the orientation-based task, 24 different, 8 same, 8 mirrored, and 8 rotated trials).

Results

The mean accuracy and correct RTs (after the trimming of outliers 2.5 SD above or below the grand mean RT for each participant by material and task; < 3% data excluded) were examined separately for each material, with group (preschoolers, first graders; between-participants), task (shape- vs. orientation-based), and trial type (fully different, identical, mirrored, rotated) as factors, plus letter type (reversible vs. nonreversible) for the analyses run on letters. We also checked that a similar pattern of statistical significance was found when analyses were run on SDT d' scores adapted for same–different designs (i.e., hits correspond to proportion of correct responses on different-response trials, and false alarms correspond to the proportion of incorrect responses on same-response trials; cf. Macmillan & Creelman, 2005), with group, task, and condition (fully different; mirrored; rotated) as factors, plus the letter-type factor in the analyses run on letters.

Geometric Shapes

The three-way interaction between all factors at test was significant on both accuracy, $F(3, 123) = 3.72, p = .013, \eta_{p}^{2} = .08$ (d' scores, $F(2, 82) = 3.97, p = .022, \eta_{p}^{2} = .09$) and RTs, $F(3, 123) = 2.94, p = .036, \eta_{p}^{2} = .07$. Consistent with our predictions, as shown in Figure 2 (see also Table 2), whereas preschoolers were immune to mirror-image differences, first graders were sensitive to them even if harmful for performance. Specifically, preschoolers were perfectly able to tolerate (i.e., responding same to) the mirrored pairs in the shape-based task (Figure 2A) and had the strongest difficulty in discriminating them in the orientation-based task (Figure 2B), whereas first graders presented a mirror cost on shape-based judgments and were quite able to explicitly discriminate the mirrored pairs.

Shape-Based Task

In the shape-based, orientation-independent task (Figure 2A), preschoolers had a similar overall performance level as first graders on both accuracy, $F(1, 41) = 2.02, p = .16$ (d' scores, $F < 1$), and RTs,
$F = 1$; we thus directly compared their performance. Notably, it was only for mirrored trials that first graders were significantly slower than preschoolers by 118 ms on average, $t(41) = 1.65$, $p = .05$ (accuracy: $t(41) = 1.40$, $p = .10$; d' scores, $t < 1$) other ts < 1. Furthermore, although first graders showed a significant mirror cost, with slower performance on mirrored than on identical trials, $F(1, 22) = 10.05$, $p = .004$ (accuracy, $F < 1$), preschoolers did not show any mirror cost (accuracy and RTs: $Fs < 1$). For plane rotations, no difference was found between groups, ts < 1, as both presented a rotation cost, with worse and slower performance on rotated than on identical trials: preschoolers, $F(1, 19) = 10.85$ and 39.36, respectively, both $ps < .005$; first graders, $F(1, 22) = 9.34$ and 19.84, respectively, both $ps < .010$. On d' scores, whereas preschoolers were not affected by orientation, with similar d' scores for mirrored, rotated, and fully different conditions, $Fs \leq 1$, first graders were affected by orientation, $F(2, 44) = 6.20$, $p = .004$, with higher d' scores in the fully different

Figure 2. Mean performance—accuracy on the top, reaction times on the bottom—of preschoolers and first graders for geometric shapes. (A) Performance in the shape-based task. (B) Performance in the orientation-based task. Error bars represent the SEM - standard error of the mean in each condition.
Table 2

Mean d’ Scores of Preschoolers and First Graders for Geometric Shapes in the Three Conditions at Test (Mirrored, Rotated, and Fully Different) in the Shape-Based and Orientation-Based Tasks

<table>
<thead>
<tr>
<th></th>
<th>Preschoolers</th>
<th>First graders</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mirrored</td>
<td>Rotated</td>
</tr>
<tr>
<td>Shape-based task</td>
<td>2.96 (.23)</td>
<td>2.75 (.18)</td>
</tr>
<tr>
<td>Orientation-based task</td>
<td>2.07 (18)</td>
<td>2.68 (19)</td>
</tr>
</tbody>
</table>

Note. Standard error of the mean (SEM) in parenthesis.

(which did not differ from the mirrored condition, \(F < 1\), than in the rotated condition, \(F(1, 22) = 9.09, p = .006\) (see Table 2).

Orientation-Based Task

As illustrated in Figure 2B, preschoolers had a specific difficulty in discriminating mirrored pairs, presenting the worst and slowest performance for these trials compared with either fully different trials, \(F(1, 19) = 23.15\) (d’ scores, \(F(1, 19) = 14.47\)) and \(F(1, 19) = 16.93\), respectively, \(ps \leq .01\), or rotated trials, \(F(1, 19) = 4.73\) (d’ scores, \(F(1, 19) = 16.11\)) and \(F(1, 19) = 4.55\), respectively, \(ps < .05\). Preschoolers were also less accurate and slower on rotated than on fully different trials, \(F(1, 19) = 16.91\) (d’ scores, \(F(1, 19) = 4.40\)) and \(F(1, 19) = 7.05\), respectively, \(ps \leq .05\). Furthermore, on mirrored trials, preschoolers were also worse than first graders, \(t(41) = 5.97\) (d’ scores), \(t(41) = 10.44\), \(ps < .001\), but not slower, \(t = -1.20, p > .10\).

Although first graders were still less accurate and slower in discriminating mirror images than plane rotations, \(F(1, 22) = 14.18\) (d’ scores, \(F(1, 22) = 19.65\)) and \(4.97\), respectively, \(ps < .05\), they were quite able to discriminate any orientation contrast, with average accuracy above 80% (see Figure 2B). Additionally, they were as accurate on rotated as on fully different pairs, \(F < 1\) (d’ scores, \(F(1, 22) = 2.42\), \(p = .13\); see Table 2), albeit slower for the former pairs, \(F(1, 22) = 17.84\), \(p < .001\).

In contrast to what happened in the shape-based task, in the orientation-based task first graders were overall more accurate than preschoolers, \(F(1, 41) = 37.84\) (d’ scores, \(F(1, 41) = 122.11\)), \(ps < .001\), but not faster, \(F < 1\). As shown in Figure 2B, first graders were especially better than preschoolers for mirror images (Group × Trial Type: accuracy, \(F(3, 123) = 7.94\), \(p < .001\); RTs, \(F < 1\); d’ scores, \(F(2, 82) = 3.00, p = .05\)).

To ensure that this result was not merely due to the overall difference between groups, we next used a normalized index to compare preschoolers with first graders on their performance drop for mirrored and rotated trials relative to fully different trials: \([\frac{(x - \bar{y})}{(x + y)}] \times 100\), where \(x\) is the proportion of correct responses on fully different trials, and \(y\) is the proportion of correct responses on either mirrored or rotated trials (cf. Fernandes & Kolinsky, 2013). The higher the performance drop, the stronger the relative difficulty to discriminate the pair on the basis of only orientation (on mirrored or rotated trials) rather than on the basis of both shape and orientation (on fully different trials). For mirror images, the performance drop was significantly stronger in preschoolers than in first graders (\(M = 11.89\%\), [SEM] = 4.19 vs. \(M = 6.06\%\), SEM = 2.19, respectively), \(F(1, 41) = 6.74, p = .013\); for plane rotations, the difference between groups did not reach the conventional level of significance, but preschoolers tended to present a larger performance drop (\(M = 4.31\%\), SEM = 2.76 vs. \(M = -1.37\%\), SEM = 1.46, respectively), \(F(1, 41) = 3.57, p = .07\).

Comparison Between the Two Tasks and the Two Groups

The comparison between tasks revealed that preschoolers found it harder to explicitly discriminate (in the orientation-based task) than to tolerate (in the shape-based task) the mirrored pairs: accuracy, d’ scores, and RTs, \(F(1, 19) = 14.90\), \(14.11\), and \(20.78\), respectively, all \(ps \leq .001\). For the other trial types (including the rotated trials), they were as fast and as accurate (with similar d’ scores) on shape-based as on orientation-based judgments, all Fs < 1 (see Figure 2). Yet, the association between performance in the two tasks was not significant, for mirrored trials (accuracy: \(r(18) = -.22, p = .18\); RTs: \(r(18) = .35, p = .12\)), for rotated trials (accuracy and RTs: \(r(18) = .05\) and \(.13, ps > .25\)), or across trials (accuracy: \(r(18) = .26, p = .13\); RTs: \(r(18) = .30, p = .10\); one-tailed t tests).
The pattern of results of first graders differed from that of preschoolers in three ways. First graders were as accurate and fast in discriminating as in tolerating the mirrored pairs, both Fs < 1.25, yet, the association between the two tasks for these trials did not reach statistical significance: accuracy, $r(21) = -.13$, $p = .28$; RTs, $r(21) = .32$, $p = .07$. Moreover, on d' scores, they were even better on orientation-based than on shape-based judgments in the mirrored condition, $F(1, 22) = 36.57$, $p < .001$. Second, a similar advantage for the orientation-based over the shape-based task was observed for the other trial types, especially for rotated pairs. On average, first graders were 24% more accurate in discriminating than in tolerating these pairs, $F(1, 22) = 44.13$, $p < .001$, and their average d' score for these pairs in the orientation-based task was almost the double of that in the shape-based task, $F(1, 22) = 153.78$, $p < .001$ (see Table 2). Finally, the association between the two tasks was significant for rotated trials, on RTs, $r(21) = .50$, $p = .008$ (not on accuracy, $r = .09$), and across trials, accuracy and RTs, $rs(21) > .50$.

Letters

In the analyses of variance run on accuracy and RTs, the Group \times Trial Type \times Letter Type interaction was significant, $F(3, 132) = 4.79$, $p = .003$, $\eta^2_p = .10$, and $F(3, 132) = 2.63$, $p = .050$, $\eta^2_p = .056$ (see Figure 3). Similarly, on d' scores, the Group \times Condition \times Letter Type interaction was significant, $F(2, 88) = 5.72$, $p = .02$, $\eta^2_p = .115$. Indeed, preschoolers were not affected by letter type at all (neither the main effect of letter type nor any interaction with other variables was significant on accuracy, d' scores, and RTs, all Fs < 1.62, $ps > .21$). In contrast, in first graders, letter type interacted with trial type (accuracy: $F(3, 66) = 13.81$, $p < .001$, $\eta^2_p = .39$, and RTs: $F(3, 66) = 5.33$, $p = .002$, $\eta^2_p = .19$; and on d' scores, with condition, $F(2, 44) = 3.08$, $p = .05$, $\eta^2_p = .122$) and with task—

![Figure 3](image-url)

Figure 3. Mean performance—accuracy on the top, reaction times on the bottom—for reversible letters (in black) and nonreversible letters (in gray) by preschoolers and first graders in the experimental tasks. (A) Performance in the shape-based task. (B) Performance in the orientation-based task. Error bars represent the standard error of the mean in each condition.
accuracy: \(F(1, 22) = 47.03, p < .001, \eta^2_p = .68; \) \(d' \) scores: \(F(1, 22) = 6.70, p = .017, \eta^2_p = .233; \) and RTs: \(F(1, 22) = 5.20, p = .032, \eta^2_p = .19. \) Actually, the impact of letter type on first-graders’ accuracy was quite specific: It was modulated by task and trial type, \(F(3, 66) = 9.53, p < .001, \eta^2_p = .30; \) Letter Type \(\times \) Task \(\times \) Trial Type was not significant for either \(d' \) scores, \(F = 1.38, \) or RTs, \(F < 1. \) As aforementioned, for preschoolers, performance was not affected by letter type, but it was modulated by task and trial type, on accuracy, \(F(3, 66) = 5.61, p = .002, \eta^2_p = .20, \) and RTs, \(F(3, 66) = 3.89, p = .01, \eta^2_p = .15. \) Similarly, on \(d' \) scores, the Task \(\times \) Condition interaction was significant, \(F(2, 44) = 9.89, p < .001, \eta^2_p = .31; \) see Table 3. Therefore, we further examined the preschoolers’ results in each task across letter type, whereas for first graders the impact of letter type was also considered.

Shape-Based Task

In contrast to what happened for geometric shapes, for letters first graders presented an overall advantage over preschoolers in the shape-based task (see Figure 3A), on accuracy, \(F(1, 44) = 9.63, p = .003 \) \((d' \) scores, \(F(1, 44) = 19.80, p < .001) \) but not on RTs, \(F = 1.25 \) (the only significant effect on RTs was the main effect of trial type, \(F(3, 132) = 11.32, p < .001). \) This advantage was modulated by letter and trial type, \(F(3, 132) = 9.16, p < .001 \) \((d' \) scores: Letter \(\times \) Condition, \(F(2, 88) = 2.44, p = .09). \)

Nevertheless, both groups exhibited the same qualitative impact of trial type on their performance. As shown in Figure 3A, preschoolers presented a rotation cost on shape-based judgments of letters: worse and slower performance on rotated trials \((M = 59.5\%, \ SEM = 3.8; \ M = 1,125 \) ms, \(SEM = 62) \) than on identical trials \((M = 71.5\%, \ SEM = 3.4; \ M = 1,003 \) ms, \(SEM = 49) \) \(F(1, 22) = 6.85 \) and 11.96, respectively, \(p < .016. \) Similarly, they had lower \(d' \) scores on the rotated than on the fully different condition (see Table 3), \(F(1, 22) = 4.91, p = .03. \)

Contrary to what happened for geometric shapes, preschoolers also presented a mirror cost for letters, with worse performance on mirrored trials \((M = 62.4\%, \ SEM = 2.5; \ M = 1,082 \) ms, \(SEM = 61) \) than on identical trials: accuracy, \(F(1, 22) = 6.10, p = .022; \) RTs, \(F(1, 22) = 3.39, p = .079, \) an effect that was also found on \(d' \) scores, \(F(1, 22) = 4.91, p = .03. \)

Similarly, first graders presented rotation and mirror costs on shape-based judgments of letters: For reversible letters, a rotation cost, accuracy, \(F(1, 22) = 50.63, \) RTs, \(F(1, 22) = 9.71, \) both \(p < .005, \) and a mirror cost, accuracy, \(F(1, 22) = 31.79, p < .001, \) RTs, \(F = 1.14 \) (also found on \(d' \) scores, with lower performance on the mirrored and rotated trials than on the fully different ones, \(F(1, 22) = 10.82 \) and 16.92, respectively, both \(p < .005); \) for nonreversible letters, the rotation and mirror costs were significant on RTs, \(F(1, 22) = 16.16 \) and 11.99, respectively, both \(p < .001, \) but not on accuracy or \(d' \) scores, \(Fs < 1 \) (see Table 3).

More important, first-graders’ shape-based judgments were modulated by letter and trial type on accuracy, \(F(3, 66) = 17.38, p < .001 \) (RTs: \(F(3, 66) = 1.55, p = .207; \) Letter \(\times \) Condition, on \(d' \) scores, \(F(2, 44) = 5.07, p = .01), because their orientation costs were stronger for reversible than for nonreversible letters. They were less accurate on shape-based judgments of reversible than nonreversible letters for mirrored pairs, \(F(1, 22) = 13.53, p = .001 \) \((d' \) scores: \(F(1, 22) = 5.96, p = .023), \) and rotated pairs, \(F(1, 22) = 62.86 \) \((d' \) scores: \(F(1, 22)

Table 3

Mean \(d' \) Scores of Preschoolers and First Graders for the Two Letter Types and Across Letter Type in the Three Conditions at Test in the Experimental Tasks

<table>
<thead>
<tr>
<th></th>
<th>Reversible letters</th>
<th>Nonreversible letters</th>
<th>Across letter type</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mirrored</td>
<td>Rotated</td>
<td>Fully different</td>
</tr>
<tr>
<td>Preschoolers</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shape-based task</td>
<td>2.58 (.20)</td>
<td>2.57 (.16)</td>
<td>3.03 (.28)</td>
</tr>
<tr>
<td>Orientation-based task</td>
<td>1.77 (.26)</td>
<td>2.59 (.19)</td>
<td>3.40 (.27)</td>
</tr>
<tr>
<td>First graders</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shape-based task</td>
<td>3.36 (.29)</td>
<td>3.02 (.25)</td>
<td>4.16 (.29)</td>
</tr>
<tr>
<td>Orientation-based task</td>
<td>3.65 (.26)</td>
<td>4.46 (.33)</td>
<td>4.86 (.28)</td>
</tr>
</tbody>
</table>

Note. Standard error of the mean in parenthesis.
(e.g., e-rotated (e.g., d-b, or d-p) than those that do not
different letter representations, either mirrored or
interference due to an orientation transformation on
The higher the orientation cost, the stronger the
different pairs, all \(p \leq .005 \) (see Figure 3B
To directly compare the two groups, we next
Comparison Between the Two Tasks and the Two
As already reported for geometric shapes,
Note, however, that for the other trial types (including
rotation trials), preschoolers were as able to per-
Contrary to what happened for shape-based
ment costs than preschoolers for both mirror images
In contrast, for reversible
letters, first graders presented stronger orientation
costs than preschoolers for both mirror images
orientation-based task; Figure 3B) than in
tolerating mirror images, F(1, 44) = 5.81, \(p = .025 \),
and on \(d' \) scores, F(1, 22) = 7.87, \(p = .011 \); RTs, F < 1.
Yet, no association was found (on accuracy
For first graders, discrimination of mirror images
continued to be harder than discrimination of plane
rotations for both reversible letters, accuracy, F(1, 22) = 4.34, \(p = .049 \) (\(d' \) scores = 4.70, \(p = .041 \)), RTs,
and nonreversible letters, accuracy, \(d' \) scores, and RTs,
first graders were still slower in discriminating than
in tolerating mirror images, F(1, 22) = 7.46, \(p = .012 \), on accuracy, F < 1; \(d' \) scores, F(1, 22) = 4.27, \(p = .051 \); this was not the case for plane
in contrast, for reversible
letters, they were actually more accurate in
(either on accuracy, on \(d' \) scores, or RTs). Although
they had an overall advantage over preschoolers in
the orientation-based task, on accuracy and \(d' \)
scores, F(1, 44) = 58.90 and 39.49, respectively, both
\(p < .001 \) (RTs: F < 1), discrimination of mirrored
pairs was still harder than discrimination of rotated
pairs, for both reversible letters, on accuracy and \(d' \)
scores, F(1, 22) = 4.34 and 4.60, respectively, both
\(p < .05 \) (RTs, F < 1), and nonreversible letters, on
accuracy, \(d' \) scores, and RTs, F(1, 22) = 9.65, 13.25,
and 14.45, respectively, all \(p \leq .005 \) (see Figure 3B
Table 3).

Orientation-Based Task

Although preschoolers were somewhat sensitive
to mirror-image differences in the shape-based task,
they still presented a specific difficulty in discrimi-
nating mirrored letters. Their orientation-based
judgments were the worst for the mirrored pairs
\(M = 50.2\% \), \(\text{SEM} = 4.1; M = 1,147 \text{ ms}, \text{SEM} = 59; \)
for \(d' \) scores, see Table 3) relative to fully different
pairs \(M = 78.2\% \), \(\text{SEM} = 2.8; M = 1,022 \text{ ms}, \text{SEM} = 37),
accuracy, \(d' \) scores, and RTs, F(1, 22) = 30.79, 25.72, and 8.87, respectively, all \(p < .01 \), and to rotated pairs \(M = 68.7\% , \text{SEM} = 3.3; M = 1,175 \text{ ms}, \text{SEM} = 42),
accuracy and \(d' \) scores, F(1, 22) = 19.23 and 16.59, respectively,
\(p < .001 \) (on RTs, F < 1), which also differed from
each other on accuracy, F(1, 22) = 5.95, \(p = .02 \) (\(d' \)
scores = 6.88, \(p = .016 \)), and RTs, F(1, 22) = 23.78, \(p < .001 \) (see Figure 3B).

Contrary to what happened for shape-based
judgments, first-graders’ orientation-based judg-
ments were not affected by letter type, all Fs < 1.25
(2014), that is, \([(x - z)/(x + z)] \times 100 \), where \(x \) is
the proportion of correct responses on fully differ-
ent trials and \(z \) is the accuracy on identical trials:
The higher the orientation cost, the stronger the
interference due to an orientation transformation on
shape-based judgments. This orientation cost was
significantly modulated by group, letter type, and
orientation contrast, F(1, 44) = 5.92, \(p = .019 \), \(\eta^2_p = .12 \). For nonreversible letters, the orientation
cost of first graders was similar to that of
preschoolers \(M = 1.34\% \), \(\text{SEM} = 3.24 \text{ vs. } 8.72\% \),
\(\text{SEM} = 4.35 \), respectively), F(1, 44) = 2.60, \(p = .12 \),
and was not modulated by the orientation contrast,
F(1, 44) = 2.34, \(p = .132 \). In contrast, for reversible
letters, first graders had an overall advantage over preschoolers in
tolerating mirror images, \(M = 19.46\% \), \(\text{SEM} = 3.56 \) vs. \(M = 5.72\% \),
\(\text{SEM} = 2.26 \), respectively), F(1, 44) = 5.40, \(p = .025 \),
and plane rotations \(M = 42.77\% \), \(\text{SEM} = 6.92 \text{ vs. } M = 10.79\% \), \(\text{SEM} = 5.83 \), respectively), F(1, 44) = 12.48, \(p < .001 \).

2018 Fernandes, Leite, and Kolinsky
22) = 18.63, \(p < .001 \), but not for identical or fully
different pairs, Fs < 1. Thus, first graders found it
harder to classify as same the pairs that map onto
different letter representations, either mirrored or
rotation (e.g., d-b, or d-p) than those that do not
either on accuracy, on \(d' \) scores, or RTs). Although
they had an overall advantage over preschoolers in
the orientation-based task, on accuracy and \(d' \)
scores, F(1, 44) = 58.90 and 39.49, respectively, both
\(p < .001 \) (RTs: F < 1), discrimination of mirrored
pairs was still harder than discrimination of rotated
pairs, for both reversible letters, on accuracy and \(d' \)
scores, F(1, 22) = 4.34 and 4.60, respectively, both
\(p < .05 \) (RTs, F < 1), and nonreversible letters, on
accuracy, \(d' \) scores, and RTs, F(1, 22) = 9.65, 13.25,
and 14.45, respectively, all \(p \leq .005 \) (see Figure 3B
Table 3).

Comparison Between the Two Tasks and the Two
Groups

As already reported for geometric shapes,
preschoolers had more difficulty in discriminating
(in the orientation-based task; Figure 3B) than in
tolerating (in the shape-based task; Figure 3A) mir-
rored letters, on accuracy, F(1, 22) = 5.81, \(p = .025 \), and on \(d' \) scores, F(1, 22) = 7.87, \(p = .011 \); RTs, F < 1.
Note, however, that for the other trial types (including
rotated trials), preschoolers were as able to per-
perform orientation-based as shape-based judgments,
on accuracy: F(2, 22) \leq 2.94, on \(d' \) scores: F(2, 22) < 1.07, \(p > .30 \), and on RTs: F(2, 22) \leq 2.63, all \(p \geq .10 \). Yet, no association was found (on accuracy
or RTs) between tasks, for mirrored or rotated
pairs, or across trials, all rs(21) \leq .25, \(p > .25 \).

For first graders, discrimination of mirror images
continued to be harder than discrimination of plane
rotations for both reversible letters, accuracy, F(1, 22) = 4.34, \(p = .049 \) (\(d' \) scores = 4.70, \(p = .041 \)), RTs,
F < 1, and nonreversible letters, accuracy, \(d' \) scores,
and RTs, F(1, 22) = 9.65, = 13.25 and 14.45, respecti-
vely, \(p \leq .005 \). Indeed, for nonreversible letters,
first graders were still slower in discriminating than
in tolerating mirror images, F(1, 22) = 7.46, \(p = .012 \), on accuracy, F < 1; \(d' \) scores, F(1, 22) = 4.27, \(p = .051 \); this was not the case for plane
rotations, all Fs \leq 1. In contrast, for reversible
letters, they were actually more accurate in
discriminating than in tolerating both the mirrored and rotated pairs, F(1, 22) = 9.76 and 62.94, respectively, ps ≤ .005, d’ scores, F = 1, and F(1, 22) = 13.06, p = .001, respectively; RTs, both Fs < 1.5. Moreover, the association between tasks was significant for mirrored and rotated trials, on RTs, both rs(21) > .64, ps < .001 (accuracy, rs < .01), and across trials, accuracy and RTs, r(21) = .59 and .85, both ps ≤ .001.

As for geometric shapes, for letters the performance drop was stronger for preschoolers than for first graders on mirrored trials (M = 23.85%, SEM = 3.54 vs. M = 8.20%, SEM = 2.10, respectively), F(1, 44) = 9.68, p = .003, but not on rotated trials (M = 7.48%, SEM = 2.70, SEM = 2.70 vs. M = 2.06%, SEM = 1.98, respectively), F = 1.92, p = .17.

Correlation Analyses

We next examined at the individual level whether orientation processing was associated with literacy-related skills (i.e., preschoolers’ letter knowledge and first graders’ reading skills, as well as phonological awareness) rather than with visuospatial abilities, by considering the correlation coefficients between these cognitive domains and the orientation cost (in the shape-based task) and performance drop (in the orientation-based task) for mirror and rotation contrasts, separately for each material. The correlation coefficients presented in Table 4 refer to accuracy, which was a more reliable measure of preschoolers’ orientation-based performance than RTs (but these correlation coefficients were also checked; see Table 4, p values reported correspond to one-tailed t tests; RTs indexes were multiplied by −1 so that the correlation pattern for RTs and accuracy would be in the same direction).

Geometric Shapes

In preschoolers, sensitivity to mirror images was significantly associated with letter knowledge: The better their letter knowledge, the stronger the mirror cost in shape-based judgments and the smaller the performance drop in orientation-based judgments of mirrored pairs (which was also associated with phonological awareness; see Table 4). No association was found between sensitivity to plane-rotation contrasts and any cognitive ability examined.

For first graders, mirror discrimination was associated with reading skills and phonological awareness (which were associated with each other, see Method): The better their literacy-related skills, the smaller the performance drop (on both accuracy and RTs) for mirrored pairs in the orientation-based task. In contrast to what was found for preschoolers, the performance drop for rotated pairs was also associated with literacy-related skills (but only when computed on RTs) and with nonverbal IQ. For the shape-based task, only one correlation was significant: The better the first-graders’ phonological

Table 4

Correlation Matrix (Correlation Coefficients) Between the Ancillary Cognitive Abilities and the Orientation Cost and Performance Drop

<table>
<thead>
<tr>
<th>Cognitive abilities</th>
<th>Geometric shapes</th>
<th>Letters</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Orientation cost (shape-based task)</td>
<td>Performance drop (orientation-based task)</td>
</tr>
<tr>
<td>Mirrors</td>
<td>Rotation</td>
<td>Mirrors</td>
</tr>
<tr>
<td>---</td>
<td>------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Preschoolers Nonverbal IQ (Raven)</td>
<td>−.150</td>
<td>−.268</td>
</tr>
<tr>
<td>Visuospatial working memory (Corsi blocks)</td>
<td>.068</td>
<td>−.270</td>
</tr>
<tr>
<td>Phonological awareness</td>
<td>−.111</td>
<td>.177</td>
</tr>
<tr>
<td>Letter knowledge</td>
<td>.481*</td>
<td>−.128</td>
</tr>
<tr>
<td>First graders Nonverbal IQ (Raven)</td>
<td>−.262</td>
<td>−.261</td>
</tr>
<tr>
<td>Visuospatial working memory (Corsi blocks)</td>
<td>.008</td>
<td>−.137</td>
</tr>
<tr>
<td>Phonological awareness</td>
<td>−.025</td>
<td>.339†</td>
</tr>
<tr>
<td>Reading index (3DM and Lobrot L3)</td>
<td>.178</td>
<td>.272</td>
</tr>
</tbody>
</table>

Note. Significant results (p < .05, one-tailed) are in bold, marginal results are underlined. *Significant association (at least, | r | > .29, p < .05) for the indexes computed on reaction times.

†p < .10. *p < .05. **p ≤ .01.
awareness, the stronger the rotation cost. Although in the same direction, the association between phonological awareness and the mirror cost (on RTs) was unreliable, $r(21) = .27$, $p = .10$.

Letters

Preschoolers’ sensitivity to mirror images was significantly associated with letter knowledge: The better their letter knowledge, the stronger the mirror cost in shape-based judgments and the smaller the performance drop for mirrored pairs in orientation-based judgments (see Table 4). Letter knowledge was also correlated with sensitivity to plane rotations (but only for the indexes computed on accuracy).

Unexpectedly, preschoolers’ phonological awareness was negatively correlated with the orientation costs. This might be related to their adoption of phonological labels to identify each letter shape in an orientation-invariant manner due to their limited letter knowledge.

For first graders, mirror discrimination was specifically associated with reading skills: The better their reading skills, the stronger the mirror cost (on RTs) on shape-based judgments, and the lower their performance drop (on both accuracy and RTs) on orientation-based judgments of mirrored letters. For both groups, the better their visuospatial abilities (i.e., nonverbal IQ and visuospatial working memory), the smaller their performance drop in the orientation-based task and the smaller their orientation cost in the shape-based task. This association was specific to plane rotations for preschoolers but for first graders it was reliable for both orientation contrasts.

Discussion

Learning to read leads to deep neurocognitive changes outside the written domain, including on visual object processing (e.g., Dehaene, Pegado, et al., 2010; Fernandes & Kolinsky, 2013; Kolinsky et al., 2011; McBride-Chang et al., 2011; Pegado, Comerlato, et al., 2014; Pegado, Nakamura, et al., 2014; Szwed et al., 2012). In this context, the present study targeted two open issues on the early influences of learning a script with mirrored symbols.

First, it was hitherto unknown when, during reading development, the spillover effect of literacy on object recognition and orientation processing would emerge. More specifically, we examined when, in the course of literacy acquisition, mirror discrimination (a consequence of learning a script with mirrored symbols) would become part of visual object recognition. To investigate this question, two groups of 5- to 7-year-old children, differing on reading skills—preliterate preschoolers and first graders—performed two same–different matching tasks on which orientation was either critical or irrelevant for successful performance, that is, orientation-based versus shape-based (orientation-independent) tasks, respectively. To our knowledge, this is the first study to adopt a within-participants design to examine in a fine-grained manner whether the impact of literacy would be similar when orientation processing was critical versus irrelevant to the task. Each task was performed on two categories matched in visual complexity: single letters and geometric shapes. The latter was the nonlinguistic category used given the proximity of its features to those of letters (cf. Hannagan et al., 2015). We thus expected that if (even incipient) changes in visual processing started to emerge early on, then by using this material we would be able to grasp them. We also conducted correlation analyses for each group on each material to examine at the individual level whether orientation processing was associated with literacy-related skills.

Second, it was still unclear whether the impact of learning a script with mirrored symbols was specific to mirror image processing or whether it would generalize to other orientation contrasts that are relevant for letters, like plane rotations (e.g., d-p; Gibson et al., 1962). To study this point, the same four trial types were used in both tasks: fully different (with different shape and different orientation), identical, mirrored, and rotated pairs. We thus directly examined mirror-image versus plane-rotation processing in two tasks where orientation processing was critical versus irrelevant for successful performance.

This study represents one of the first demonstrations of early changes in the mirror-generalization system due to literacy acquisition and provided four original contributions on the impact that learning a script with mirrored symbols has outside the written domain.

First, we presented the first evidence of an absolute and specific mirror cost on visual nonlinguistic object recognition. For geometric shapes, a nonlinguistic material novel for both prelinguistic preschoolers and first graders, the two groups were overall equally able to perform shape-based judgments. Most interestingly, the groups differed only on mirrored pairs: Although preschoolers were immune to irrelevant
mirror-image differences, first graders exhibited such strong mirror cost that they were even slower than preschoolers. We thus found an absolute mirror cost on shape-based judgments of nonlinguistic objects, a consequence of literacy acquisition predicted by the neuronal recycling hypothesis (Dehaene, 2009). In the first study to show a mirror cost in literate adults, no other orientation contrast was examined and the mirror cost was only relative, as illiterate adults were overall slower and more error-prone than the literate groups (Pegado, Nakamura, et al., 2014). In Kolinsky and Fernandes (2014), only literate adults (and not illiterates) were affected by mirror and rotation contrasts of familiar objects, and for geometric shapes, all participants, whatever their literacy level, were sensitive to the irrelevant orientation contrasts, at least on response latencies and mostly for plane rotations. Yet again illiterate adults were overall slower and more error prone.

Second, by examining orientation processing when it was critical versus irrelevant for successful performance in a within-participants design, the present study is the first to conclusively show that preliterates’ specific difficulty with mirror discrimination cannot be attributed to a general difficulty with orientation processing or because orientation is a dimension less salient than shape. On the one hand, if preschoolers had a general difficulty with orientation, then plane-rotation discrimination should have been as hard as mirror discrimination. On the contrary, they were quite capable of discriminating rotated pairs, and when compared to first graders using the normalized index, the two groups presented a similar performance drop for rotated pairs. On the other hand, if orientation was a dimension less salient than shape, preschoolers should have been worse on orientation-based than on shape-based judgments of rotated pairs. Quite the opposite, they presented similar rotation costs as first graders on shape-based judgments of geometric shapes, in line with the plane-rotation sensitivity of the ventral visual system (Logothetis et al., 1995; Tarr & Pinker, 1989), and more important, they were as able to explicitly discriminate plane-rotation contrasts as to tolerate them. They presented the same level of interference from the irrelevant dimension of rotated pairs in both tasks (i.e., orientation in the shape-based task and shape in the orientation-based task). To put it differently, preschoolers were equally sensitive to the two incongruent dimensions—orientation and shape—as they were as able to attend to shape as to orientation of rotated pairs. Consequently, their difficulty with mirror discrimination cannot be due to low sensitivity to orientation in general; it seems rather grounded on the original mirror invariance property of the ventral visual system (Dehaene, 2009; Logothetis et al., 1995). This difficulty with mirror discrimination is consistent with the absence of a mirror cost on their shape-based judgments, denoting mirror invariance, and agrees with prior findings on illiterate adults and preliterate children (e.g., Casey, 1984; Danziger & Pederson, 1998; Fernandes & Kolinsky, 2013; Gibson et al., 1962; Kolinsky et al., 2011; Nelson & Peoples, 1975; Pederson, 2003), which argues for the robustness of this effect.

Third, the adoption of a within-participants design also allowed us to demonstrate that the expression of the visual consequences of literacy depends on the type of processing at stake. Whereas this impact was mirror specific when the task did not required orientation processing and visual object recognition was involved, it was instead general when explicit orientation processing was required. The overall advantage of first graders over preschoolers on orientation-based judgments does not seem to be due to a generic age effect, as no overall difference between groups was found on shape-based judgments of geometric shapes. Instead, it seems to be due to perceptual expertise with the written code: Learning to read enhances the relevance of orientation, which then becomes a critical dimension of visual objects. In fact, the orientation-based task used here required both shape and orientation processing (only exact matches had to be considered as same), and the conjunction of shape and orientation is essential in letter and visual word recognition, and hence, the advantage of first graders is not surprising. Perceptual expertise with a visual category leads to enhancement of the relevant dimensions (e.g., Dehaene, Pegado, et al., 2010; Folstein et al., 2013; McCandliss et al., 2003). Thus, when learning to read, children learn to attend to critical reading-related cues, such as orientation, which were not relevant to perceptual experience before this cultural activity took place (e.g., Casey, 1986; Gibson et al., 1962; Kolinsky et al., 2011; Nelson & Peoples, 1975). Moreover, during literacy acquisition, beginning readers become as able to attend to orientation as to the shape of mirrored pairs of nonlinguistic objects, as shown by their similar performance in the two experimental tasks for these pairs. The differential impact of literacy found in the shape-based versus orientation-based tasks also agrees with prior studies showing that, even when the same material and procedure is adopted, different tasks tap into
different processes underpinned by different neural substrates. Although parietal regions, part of the dorsal stream, are important for explicit orientation processing, regions of the ventral visual stream are mainly important for processing objects’ shape and identity (e.g., Gauthier et al., 2002; Harris, Benito, Ruzzoli, & Miniussi, 2008). This distinction could also explain why no significant association was found between performance in the two experimental tasks for preschoolers on either geometric shapes or letters, whereas for first graders the association was reliable. Additionally, it was only for first graders that performance in the two experimental tasks was associated with visuospatial abilities known to be related with dorsal stream functioning (e.g., Chinello, Cattani, Bonfiglioli, Dehaene, & Piazza, 2013). It thus seems that literacy acquisition enhances the cross-talk between the two visual streams. In this vein, Chinello et al. (2013) recently examined the behavioral performance of kindergarteners (from 3 to 6 years old) and adults in an extensive set of functions related to the dorsal versus ventral streams (e.g., visuospatial memory and grip aperture during grasping versus face and object recognition) and found that it was only for adults, not for children, that visuospatial memory (assessed with the Corsi blocks test) was associated with object recognition.

Fourth, the present study shows that the mirror-specific impact of literacy on visual (nonlinguistic) object recognition begins to emerge, though crudely, before literacy instruction, allied with letter knowledge. Although as a group preschoolers did not present a mirror cost on their shape-based judgments of geometric shapes, the correlation analyses revealed that letter knowledge was specifically associated with sensitivity to mirror-image differences (and not to plane-rotation differences): The higher preschoolers’ letter knowledge, the stronger the mirror cost on shape-based judgments and the smaller the performance drop on orientation-based judgments of mirrored geometric shapes.

This association between letter knowledge and the mirror cost on shape-based judgments of preschoolers is probably related to the nonlinguistic material used here. Indeed, the degree of similarity to letters should influence the magnitude of the spillover effect of literacy on visual recognition of other categories (Hannagan et al., 2015). This is also consistent with the observation of orientation costs in identity-based judgments of illiterate adults for geometric shapes but not for pictures of familiar objects (Kolinsky & Fernandes, 2014). In fact, familiarity with letters can explain the discrepancy between the present results (i.e., the absence of a mirror cost on shape-based judgments of geometric shapes by the preschool group) and those of Kolinsky and Fernandes (2014) with illiterate adults, given that the latter group has a long life experience in a literate world (Fernandes et al., 2014).

Nevertheless, the fact that preliterate children already present some sensitivity to mirror images agrees with prior findings suggesting an early impact of the visual properties of the script to be learned on nonlinguistic visual processing (McBride-Chang et al., 2011). The present pattern of results adds to this evidence by showing that such specific impact of literacy as the one on mirror-image processing starts to emerge with letter knowledge before children are able to decode. It also explains why the preschoolers examined here already present a mirror cost in shape-based judgments of letters, which was also associated with their letter knowledge. This latter result is consistent with former observations that preschoolers who are able to correctly write their names without mirrored errors are also able to discriminate mirrored pairs of geometric shapes (Casey, 1984; Casey, 1986). It might seem at odds with the original mirror invariance of the ventral visual system (e.g., Dehaene, 2009; Logothetis et al., 1995), but prior studies have shown that the emergence of letter-specialized processing begins before formal literacy instruction in both preliterate children and illiterate adults (e.g., Cantlon et al., 2011; Fernandes et al., 2014).

Perceptual expertise with letters can explain the remarkable advantage of first graders on both shape- and orientation-based judgments of letters after only ~8 months of reading instruction. On the downside, it also explains first graders’ worse performance on shape-based judgments of mirrored and rotated pairs of reversible compared to nonreversible letters. Experts usually show less flexibility in selectively ignoring the dimensions relevant to their category of expertise (e.g., Folstein et al., 2013), which explains orientation interference on letter recognition by adult readers (e.g., Corballis & Nagourney, 1978; Jolicoeur & Landau, 1984; Pegado et al., 2011; Pegado, Nakamura, et al., 2014) and the orientation costs found here on letters’ shape-based judgments by first graders. In fact, their orientation cost for reversible letters was so strong that it canceled out any advantage over preschoolers.

This pattern of results seems to agree with the results found by Perea et al. (2011) in literate adults, using the masked priming paradigm:
Mirrored versions of reversible letters (e.g., i-bea, mirrored letter underlined) significantly inhibited the recognition of target words (i.e., IDEA). Given the present observation of both mirror and rotation costs in first-graders’ shape-based judgments of reversible letters, it remains to be confirmed whether the mirror interference reported by Perea et al. is exclusive for mirror images. It could rather be due to activation of an existing letter representation that is incompatible with the target word. Thus, the same interference would be expected for rotated versions of reversible letters (e.g., if i-pear preceded the target IDEA). Future research should examine this prediction.

The association between explicit orientation processing of both linguistic and nonlinguistic material and first-graders’ reading skills suggests that for these beginning readers mirror discrimination is not yet fully accomplished and might continue to develop after first grade (Cornell, 1985). For these children, mirror discrimination continued to be harder than plane-rotation discrimination for both geometric shapes (i.e., average accuracy of 80.0% for mirrored pairs vs. 91.0% for rotated pairs, see Figure 2) and letters (with slower performance on mirrored than rotated pairs); and this continues to be the case in adults, even after years of reading practice (Fernandes & Kolinsky, 2013; Gregory et al., 2011; Kolinsky et al., 2011). Thus, mirror discrimination is triggered by learning a script with mirrored symbols, but it is not a dichotomous phenomenon fully determined by literacy. The original mirror invariance of the visual recognition system is not fully erased (Dehaene, 2009) and could instead be inhibited during recognition of visual objects, including letters (e.g., Donabeitia, Molinaro, & Carreiras, 2011; Perea et al., 2011).

Neuropsychological, functional magnetic resonance imaging, (fMRI), and transcranial magnetic stimulation studies have shown that mirror discrimination of linguistic and nonlinguistic objects has different neurocognitive loci. For linguistic material, mirror discrimination is underpinned by ventral occipitotemporal regions, which are mirror invariant for pictures of familiar objects (e.g., Dehaene, Nakamura, et al., 2010; Nakamura, Makuuchi, & Nakajima, 2014; Pegado et al., 2011; Vinckier et al., 2006). What is, however, unclear is the temporal locus and the cognitive mechanism responsible for mirror discrimination. Although beyond the scope of the present work, this is still hotly debated, and two accounts have been proposed. According to one account, mirror discrimination occurs due to inhibition of mirror invariance at a late, possibly attention-dependent, stage of visual processing (Donabeitia et al., 2011; Donabeitia et al., 2013; Perea et al., 2011). The other account proposes that mirror discrimination becomes part of visual processing from an early time window (i.e., 100–148 ms after stimulus onset; Pegado, Comerlato, et al., 2014), and evidence in favor of both has been on the table.

These mixed results could be due to the adoption of different paradigms, tasks, and materials, because different experimental conditions tap into different phases of visual processing. In fact, this could also be the reason for the discrepancy between the mirror cost that we found for shape-based judgments of geometric shapes by first graders and the mirror invariance found by Wakui et al. (2013) for short-term priming of familiar objects by children. Besides low-level differences between the materials used, the latter paradigm may tap into an earlier processing stage than the same–different task used in the present study (for discussions, see Kolinsky et al., 2011; Nakamura et al., 2005).

In addition to the aforementioned theoretical implications, the present study can also contribute to the growing interest from multiple developmental perspectives on children’s print awareness and on its unique contribution to reading acquisition. Indeed, in parent–child conversations, more visual attributes are used to describe letters than pictures, and not only parents but also children emphasize letters’ visual properties (Robins, Treiman, Rosales, & Otake, 2012), as if (at least implicitly) they recognize the importance of visual features on letter learning and subsequent reading development. The engagement in these conversations, especially about the child’s initial, was associated with better reading outcomes even after other factors, such as vocabulary, were controlled for (Treiman et al., 2015). More important, even before children know what letters represent (i.e., the letter-sound correspondence), they are already sensitive to letters’ visual statistical patterns (Pollo, Kessler, & Treiman, 2009; Treiman, Cohen, Mulqueeny, Kessler, & Schechtman, 2007; Treiman & Kessler, 2011). Preschoolers are better at copying and writing letters with the most frequent arrangement of visual features in the Latin alphabet, that is, letters with a hasta on the left and a coda on the right (e.g., b and F) than letters with the opposite arrangement (Pollo et al., 2009) and, hence, make more mirrored errors on letters of the latter type (e.g., writing b instead of d; Treiman & Kessler, 2011). The present study adds to this literature, showing that mirror discrimination, which is a necessary condition for
mastering the Latin alphabet, can be promoted by literacy-related activities about letter forms, and this could happen at home during parent–children interactions or at the kindergarten. Additionally, our results show that training orientation discrimination in general is not the best practice; preschoolers do not have difficulties with discrimination of plane rotations, and this ability is not related to mirror discrimination. It is letter knowledge and familiarity with letter forms that are the key. Thus, our work is part of an emergent line of research showing that literacy has a visual facet, crucial for learning to read, to which letter knowledge strongly contributes.

References

